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ABSTRACT

An increasing number and variety of platforms are now capable of collecting remote sensing data over a par-
ticular scene. For many applications, the information available from any individual sensor may be incomplete,
inconsistent or imprecise. However, other sources may provide complementary and/or additional data. Thus, for
an application such as image feature extraction or classification, it may be that fusing the mulitple data sources
can lead to more consistent and reliable results.

Unfortunately, with the increased complexity of the fused data, the search space of feature-extraction or
classification algorithms also greatly increases. With a single data source, the determination of a suitable
algorithm may be a significant challenge for an image analyst. With the fused data, the search for suitable
algorithms can go far beyond the capabilities of a human in a realistic time frame, and becomes the realm of
machine learning, where the computational power of modern computers can be harnessed to the task at hand.

We describe experiments in which we investigate the ability of a suite of automated feature extraction tools
developed at Los Alamos National Laboratory to make use of multiple data sources for various feature extraction
tasks. We compare and contrast this software’s capabilities on 1) individual data sets from different data sources
2) fused data sets from multiple data sources and 3) fusion of results from multiple individual data sources.

Keywords: supervised classification, data fusion, support vector machines, feature extraction, machine learning,
multispectral

1. INTRODUCTION

With the availability of more and more data from an increasing number of sensors, the field of data fusion is
a hot-bed of activity. It is the aim of data fusion to integrate the data available from a number of different
sensors in order to obtain more information than can be derived from the data available from any one of the
single sensors alone. However, data fusion in and of itself is not guaranteed to be beneficial. In fact, in order
for data fusion to be of benefit, there are many questions that need to be addressed. In this paper we describe
experiments in which we attempt to answer some of these questions as they pertain to classification performance
using a particular set of classification algorithms developed at Los Alamos National Laboratory.

2. CLASSIFICATION ALGORITHMS: AFREET

2.1. Description

AFREET1 is a machine learning system for pixel-by-pixel image classification, that combines ideas from Support
Vector Machines2 with a hill-climbing method for constructing useful spatio-spectral image features.∗ It has
shown itself to be capable of producing robust and powerful image pixel classifiers on a variety of feature
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extraction tasks. We include a brief description here, but for more detail the interested reader is referred to
Perkins et al.1

In the pixel-by-pixel image classification problem, we wish to assign a label to each pixel in an image, where
the set of labels from which to choose is fixed. Terrain categorization and crop identification are examples of
problems that fit this model in the remote sensing arena. AFREET is a learning system, so it derives a classifier
from a training image that has been “marked up” by an analyst to show example regions corresponding to the
different label classes. We typically obtain this training data by having an image analyst paint different regions
of an image using a Java image visualization tool developed at LANL.

All the experiments reported in this paper involve deriving classifiers that distinguish a target feature from
“background”, i.e. a two label classification problem. AFREET is motivated by the observation that assigning
the correct label to a pixel often requires knowledge not only of the spectral content of that pixel (its “color”),
but also of the surrounding spatial context. AFREET generates a set of numeric descriptors† for each pixel
in the training image, using a library of spatial and spectral image processing operators, combined together in
arbitrary ways. The set of descriptors defines a vector of numbers associated with each pixel in the image, and
these vectors are fed into a statistical classifier called a support vector machine (SVM).2 The SVM then derives
a function that maps vectors of descriptors onto class labels.

Different sets of image descriptors lead to better or worse classification performance. In its most commonly
used variant, AFREET initially generates a completely random set of descriptors, which typically perform poorly.
However, by using feedback from the SVM learner, AFREET gradually evolves the descriptor set in a stochastic
hill-climbing procedure, until after a number of iterations, it has found a good set of descriptors.

2.2. AFREET Variants

The hill-climbing refinement of the descriptor set usually leads to good sets of descriptors, but since each re-
finement requires the SVM backend to be recalculated, the process can be slow. An alternative approach is to
decide in advance on a promising set of descriptors and simply skip the whole descriptor refinement stage. In
this paper we consider three AFREET variants:

AFREET-search The standard hill-climbing version of AFREET described above.

AFREET-spectral In this version the vector of descriptors associated with each pixel consists simply of the
intensity values in each spectral band for that pixel. The intensity values in each band are normalized to
lie between the range 0.0 to 1.0 to assist the SVM backend.

AFREET-gabor A set of texture operators is applied to the image to generate a set of multi-scale texture
descriptors for each pixel. For each spectral band in the image, this process generates nine additional
descriptors. The texture operators are a mixture of rotationally invariant Gabor operators and Gaussian
smoothing operators and are very similar to those described by Greenspan et al5

3. THE DATA: MUST 2000

Australia hosted a major international trial of new and emerging electro-optical imaging sensors under The
Technical Cooperation Program (TTCP). The trial took place from late May through early June 2000 and
involved more than 130 participants, making it one of largest trials of its kind ever held in Australia.

The MUST 2000 Multi-Sensor Trial was carried out at Cowley Beach in tropical Northern Queensland (an
area located within a World Heritage Rain Forest region) and provided researchers from the UK, the USA,
Canada and Australia a rare opportunity to simultaneously collect data from a variety of leading edge ground-
based and airborne surveillance systems. It provided for the collection of imagery of well-characterised military
and non-military targets in varying degrees of cover, against cluttered tropical and littoral backgrounds.

†These descriptors are usually called features in the machine learning community, but we call them descriptors here

to avoid confusion with the term “feature extraction”.



During the Australian trial airborne imagery was collected using a thermal hyperspectral sensor from the
University of Hawaii, an Australian-made hyperspectral sensor, HYMAP, from Hyvista Corporation, Australia’s
JP129 airborne surveillance system and JPL’s AirSAR. In addition to the airborne imagery collected, satellite
imagery was also collected from various satellites, including Landsat 7 and Ikonos.

In addition to the satellite and airborne imagery collected over the region, there is also a host of ground truth
information collected at the same time, together with various digitized maps of the region, including soil and
vegetation maps.

A sub-set of the MUST 2000 data was used for our experiments, described next.

4. EXPERIMENTS

4.1. Data Sources

The data sources used in these experiements were: Ikonos imagery (panchromatic and multispectral, acquired
27th May 2000), Landsat ETM+ imagery (panchromatic and multispectral, acquired 15th July 2000), AirSAR
imagery (HH, VV, HV, and PHASE, acquired 31st August 2000). Ground truth information was obtained from
a 1:20,000 digitized black-and-white line map of vegetative land cover.6

4.1.1. Ikonos

Ikonos is a commerical satellite operated by Space Imaging Inc. It was launched in September 1999, and since
then has been providing a reliable stream of high-resolution image data. The Ikonos satellite produces 1-meter
resolution black-and-white (panchromatic) and 4-meter resolution multispectral (red, blue, green, near infrared)
imagery.7

4.1.2. Landsat 7

Landsat 7 is the latest in a series of satellites, comprising the Landsat program: a cooperative program between
NASA, NOAA and the USGS. The Enhanced Thematic Mapper Plus (ETM+) instrument onboard the Land-
sat 7 satellite is an eight-band multispectral scanning radiometer capable of providing high-resolution imaging
information of the Earth’s surface. It detects spectrally-filtered radiation at visible, near-infrared, short-wave,
and thermal infrared frequency bands from the sun-lit Earth in a 183 kilometer-wide swath when orbiting at an
altitude of 705 kilometers. Nominal ground sample distances or “pixel” sizes are 15 meters in the panchromatic
band; 30 meters in the 6 visible, near and short-wave infrared bands; and 60 meters in the thermal infrared band.8

For the experiments described here only the 6 30-meter resolution (visible, near and short-wave infrared) bands
of the Landsat 7 data were used.

4.1.3. AirSAR

Airborne Synthetic Aperture Radar (AirSAR) is an all-weather imaging tool able to penetrate through clouds
and collect data at night. The longer wavelengths can also penetrate into the forest canopy and in extremely dry
areas, through thin sand cover and dry snow pack. AirSAR was designed and built by the NASA’s Jet Propulsion
Laboratory (JPL) which also manages the AirSAR project. AIRSAR serves as a NASA radar technology testbed
for demonstrating new radar technology and acquiring data for the development of radar processing techniques
and applications. As part of NASA’s Earth Science Enterprise, AirSAR first flew in 1988 and continues to
conduct at least one flight campaign each year, either in the United States or on an international mission.9

4.2. Coregistration

Some pre-processing of these data sets were required before they could be presented to AFREET for analysis.
The aforementioned data sets (Ikonos, Landsat 7, AirSAR and vegetation map) were coregistered and resampled
to match the cell size and spatial extents of a digitzed 1:25,000 scale map of the Cowley Beach military training
area. The spatial reference system used was a latitude and longitude grid, based on the World Geodetic System
(WGS) 1984 datum, with a resolution of 0.2 arc-seconds (approximately 5 meters) per raster cell. Each raster
plane in the coregistered data set consisted of 2001 rows by 2001 columns of cells.



4.3. Fused data

In order to perform classification via “image fusion”, we provided fused data as stacked, coregistered, multispec-
tral image data. Thus, fused data from multiple separate sensors was created by simply stacking the separate
coregistered image data sets on top of one another and creating a single “fused” image data set. Thus, in total,
with the original single-sensor image data sets and the fused image data, we had 7 data sets (3 single-sensor data
sets, 3 two-sensor fused data sets and 1 three-sensor fused data set):

• Ikonos image data

• Landsat 7 image data

• AirSAR image data

• AirSAR + Ikonos fused image data

• AirSAR + Landsat 7 fused image data

• Ikonos + Landsat 7 fused image data

• Ikonos + Landsat 7 + AirSAR fused image data

4.4. Tasks Set

We set AFREET two feature extraction tasks. These tasks were to find, separately, algorithms capable of
distinguishing two of the vegetation type as described in the vegetation land-cover map6 against the background
of everything else. We selected the following two vegetation types:

• Vegetation type 5d : Medium closed forest; Melaleuca quinquerie + rainforest species (Eugenia sp. aff.
angophoroides, Dillenia allata, Deplanchea eteraphylla) + sedge (Gahni sierberana, Scleria polycarpa) +
fern (Blechnum indicum, Nephrolepsis biserrata) understorey, with swamp hummocks developed on the
fibrous peat surface and near perennial standing water or shallow water-tables.

• Vegetation type 9 : Dwarf to low open forest complex; Dwarf tree canopy of Melaleuca viridiflora
sens. lat. ± emergent grey bloodwood (Eucalyptus intermedia), wattle (Acacia crassicarpa) and she-oak
(Casuarina littoralis), on sandy ground-water podozol.

4.5. Training Data

Using the coregistered vegetation map overlaid on the other satellite and airborne imagery, a human analyst
created training sets by marking up (labelling) regions containing the vegetation type of interest and regions
containing other land-cover types (thus providing labelled examples of the two categories into which the images
would be classified: feature of interest and background). For each vegetation type, two separate (completely
disjoint) training data sets were constructed: one for training purposes and one for testing the algorithms found
during training. For the vegetation type 5d training set, the mark-up included 7,220 pixels for the positive
(feature of interest) class and 92,508 pixels for the negative (background) class (a ratio of 1:12.8 of positive
to negative training pixels). For the testing set, the mark-up included 10,119 pixels for the positive class and
142,379 pixels for the negative class (a ratio of 1:14.07 of positive to negative labelled pixels). For the vegetation
type 9 training set, the mark-up included 3,327 pixels for the positive (feature of interest) class and 96,401 pixels
for the negative (background) class (a ratio of 1:28.98 of positive to negative training pixels). For the testing
set, the mark-up included 7,246 pixels for the positive class and 98,056 pixels for the negative class (a ratio of
1:13.53 of positive to negative labelled pixels).



4.6. AFREET Training

For training AFREET in “search” mode, for each training run, the search is initiated with a random algorithm,
and the mutations etc. performed during the search are random in nature. We therefore performed 30 runs for
each training set. This was done so that a determination of AFREET’s overall performance, in general, could be
ascertained. For training AFREET in “spectral” and “Gabor” mode, as there is no randomness in the process,
we only performed a single run for each training set.

4.7. Combining multiple AFREET-search runs

Performing multiple AFREET-search runs using the same training data gives information about the overall
performance of AFREET in search mode for the problems at hand. In addition, we evaluated the effect on
classification performance of using AFREET-spectral to combine the results from the multiple AFREET-search
runs. To this end we provided the results from each AFREET-search run together as a “multispectral” image
stack to AFREET-spectral, together with the same training data as during the individual AFREET-search runs.

4.8. Combining multiple outputs from AFREET-search runs on single sensor data

We compared the performance of two methods of “fusion”:

a Taking the results of combining the multiple AFREET-search runs (as described above) for the individual
single data sensor data, then combining these results and providing these as the input image data to
AFREET-spectral in order to obtain a final “fused” classification.

b Combining the multiple AFREET - search runs (as described above) for the fused image data.

Thus we would be comparing the classification peformance of AFREET using fused image data from multiple
sensors with the classification performance of AFREET using the fused outputs of classifications on the individual
sensor image data. Fig. 1 provides a graphical representation of the two approaches to fusion taken in this
comparison.

5. RESULTS

5.1. Classification score

The classification tasks we set in these experiments consist of classifying every pixel in an entire image into two
classes: “true” and “false”, where the true class is the feature of interest (in the experiments shown here the
feature of interest is a vegetation type) and the false class is the background of everything else. The goal of our
optimisation technques is to find an algorithm that simultaneously maximizes detection rate (fraction of “true”
pixels classified correctly) and minimizes the false alarm rate (fraction of “false” pixels classified incorrectly),
with respect to the training data provided. It is convenient to have a single objective measure of performance
that combines the detection rate and false alarm rates with which one can compare algorithm performance. To
this end, we define the “score” for an algorithm as follows: If we denote the detection rate as Rd and the false
alarm rate as Rf , then the score S of a classification algorithm is given by

S = 500(Rd + (1−Rf )). (1)

Thus, a score of 1000 indicates a perfect classification result. This score metric gives equal weighting to type
I (true pixel incorrectly labelled as false) and type II (false pixel incorrectly labelled as true) errors.
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Figure 1. (a) Fusing Image Sensor Data and Classifiying vs (b) Classifying Image Sensor Data and Fusing

5.2. Comparison of performance for AFREET’s different modes of operation

Table 1 shows the average performance, in terms of detection rate (DR), false alarm rate (FAR) and score, of the
classification algorithms determined during training in the various AFREET modes of operation, using image
data from single sensors. In this and all other tables in this paper, performance was averaged over the results for
the two vegetation types. Row one shows the performance for AFREET used in spectral mode. Row two shows
the preformance in Gabor mode. Row three shows the mean score for the 30 training runs in search mode. Row
4 shows the performance for the result of combining the multiple search mode results using AFREET-spectral.
The performances are shown for both the in-sample (training) data and out-of-training-sample (testing) data.

With regard to performance on the training data, it can be seen that as one goes down the table (i.e. as
the classifiers become increasingly sophisticated/complex), there is an increase in performance. For all but the
Ikonos data there is an (albeit small) increase in detection rate, but for all sensor data types there is a consistent
drop in false-alarm rates with increasing classifier complexity. For the testing data, as with the training data,
there is a marked downward trend in the false-alarm rate with increased classifier complexity.

Table 2 shows the average performance of the classification algorithms using image data consisting of fused
data from two different sensors. The same result is shown as for the single-sensor data sets, with at least no
decrease in detection rate for the case of the Ikonos + Landsat fused data.

Table 3 shows the average performance of the classification algorithms, using image data consisting of fused
data from three different sensors. It can be seen that for both the training data and the testing data there is a
general downward trend in the false-alarm rate with increased classifier complexity.

5.3. Effect on classification performance of providing additional sensor image data

The results presented in the following Tables (4 - 6) present no additional data than is present in Tables 1 - 3.
We merely present the information in a different format in order to compare data types more easily.

Table 4 shows the average performance, in terms of detection rate (DR), false alarm rate (FAR) and score,
of the classification algorithms determined during training using AFREET in spectral mode, for the various



Table 1. Average performance for classification methods: data from single sensor

Ikonos Landsat AirSAR

DR FAR Score DR FAR Score DR FAR Score

Training

AFREET-spectral 98.24 32.06 830.9 96.85 17.16 898.5 57.40 34.95 612.3

AFREET-Gabor 100.0 14.41 925.9 99.73 6.70 965.2 97.81 11.49 931.6

AFREET-search 99.97 2.77 986.1 99.99 0.92 995.3 99.66 4.40 976.4

combined multiple AFREET-search 100.0 0.12 999.4 100 0.02 999.9 100.0 1.36 993.2

Testing

AFREET-spectral 97.52 42.29 776.2 97.46 41.24 781.1 51.71 35.45 581.3

AFREET-Gabor 95.20 23.93 856.4 93.29 25.19 840.5 73.26 27.95 726.6

AFREET-search 87.23 15.93 856.6 93.98 14.13 899.3 89.56 13.09 882.3

combined multiple AFREET-search 68.89 3.94 824.8 86.69 6.43 901.3 65.75 4.65 805.5

Table 2. Average performance for classification methods: data from two sensors

AirSAR + Ikonos AirSAR + Landsat Ikonos + Landsat

DR FAR Score DR FAR Score DR FAR Score

Training

AFREET-spectral 96.70 29.04 838.3 96.62 15.74 904.4 97.72 16.24 906.0

AFREET-Gabor 99.82 7.21 963.8 99.93 2.55 986.9 99.99 4.72 976.4

AFREET-search 99.99 3.24 983.8 99.98 1.13 994.4 99.99 1.04 994.8

combined multiple AFREET-search 100.0 0.42 997.9 100.0 0.01 1000 100.0 0.02 999.9

Testing

AFREET-spectral 93.59 37.92 778.4 94.31 40.71 768.0 97.58 32.80 823.9

AFREET-Gabor 90.86 18.27 883.0 87.85 20.16 838.5 91.69 16.10 878.0

AFREET-search 91.76 16.35 877.1 92.84 15.56 886.4 88.63 15.84 864.0

combined multiple AFREET-search 80.34 4.53 879.1 92.22 9.05 915.9 77.24 8.17 845.3

combinations of the three types of sensor image data. The first row shows the performance for AFREET-
spectral using single sensor image data . The second row shows the performance for combinations of two sensor
image data types. The third row shows the performance for the combination of the three sensor image data
types. The performances are shown for both the in-sample (training) data and out-of-training-sample (testing)
data. It can be seen that, for both the training data and the testing data there is a decrease in the false-alarm
rate of the classifier performance as one adds additional sensor data, from one to two and from two to three
sensors.

Table 5 shows the average performance of the classification algorithms determined during training using
AFREET in Gabor mode, for the various combinations of the three types of sensor image data. As with the

Table 3. Average performance for classification methods: data from three sensors

Ikonos + Landsat + AirSAR
DR FAR Score DR FAR Score

Training Testing
AFREET-spectral 97.22 14.73 912.45 94.38 31.54 814.3
AFREET-Gabor 100.0 1.96 990.2 88.05 14.32 868.7
AFREET-search 99.99 1.37 993.2 91.99 15.13 884.3

combined multiple AFREET-search 100.0 0.04 999.8 86.25 5.87 901.9



Table 4. Results using AFREET-spectral: effect of additional sensor data

DR FAR Score DR FAR Score DR FAR Score
Training

Ikonos Landsat AirSAR
98.24 32.06 830.9 96.85 17.16 898.5 57.40 34.95 612.3

AirSAR +
Ikonos

AirSAR +
Landsat

Ikonos +
Landsat

96.70 29.04 838.3 96.62 15.74 904.4 97.72 16.24 906.0

Ikonos +
Landsat +
AirSAR

97.22 14.73 912.5

Testing
Ikonos Landsat AirSAR

97.52 42.29 776.2 97.46 41.24 781.1 51.71 35.45 581.3

AirSAR +
Ikonos

AirSAR +
Landsat

Ikonos +
Landsat

93.59 37.92 778.4 94.31 40.71 768.0 97.58 32.80 823.9

Ikonos +
Landsat +
AirSAR

94.38 31.54 814.3

AFREET-spectral case, it can be seen that, for both the training data and the testing data there is a decrease
in the false-alarm rate of the classifier performance as one adds additional sensor data.

Table 6 shows the average performance of the classification algorithms determined during training using
AFREET in search mode, for the various combinations of the three types of sensor image data. There does not
appear to be any noticeable trend or relationship between classifier performance (detection rate, false-alarm rate
or score) and additional sensor data for AFREET operated in search mode.

5.4. Comparison of performance using fused data from multiple sensors to performance
using fused classification results from single sensor data

Table 7 compares the average classification peformance of AFREET using fused image data from two sensors
with the classification performance of AFREET using the fused outputs of classifications on the individual sensor
image data. Row one shows the mean performance of AFREET in search mode over 30 training runs using the
fused image data from two sensors. Row two shows the performance of AFREET in spectral mode using the
results from each individual AFREET-search training run as the input image data (as shown graphically in Fig.
1(a)). Row three shows the performance of AFREET in spectral mode, where the input data is the combination
of the (AFREET-spectral) combined results from the AFREET-search runs on the individual, single sensor image
data (as shown graphically in Fig. 1(b)). The performances are shown for both the in-sample (training) data
and out-of-training-sample (testing) data.

It can be seen that, for the training data, there does not appear to be any benefit in performing classification
on the individual sensor data and combining the results compared to combining the sensor data and then
performing the classification on the fused data. However, on the testing data, there is a decrease in false-alarm
rate when using the latter approach, compared to the former.

Table 8 compares the average classification peformance using fused image data from three sensors. It can
be seen that, just as with the two-sensor case, for the training data, there does not appear to be any benefit
in performing classification on the individual sensor data and combining the results compared to combining the



Table 5. Results using AFREET-Gabor: effect of additional sensor data

DR FAR Score DR FAR Score DR FAR Score
Training

Ikonos Landsat AirSAR
100.0 14.41 925.9 99.73 6.70 965.2 97.81 11.49 931.6

AirSAR +
Ikonos

AirSAR +
Landsat

Ikonos +
Landsat

99.82 7.21 963.8 99.93 2.55 986.9 99.99 4.72 976.4

Ikonos +
Landsat +
AirSAR

100.0 1.96 990.2

Testing
Ikonos Landsat AirSAR

95.20 23.93 856.4 93.29 25.19 840.5 73.26 27.95 726.6

AirSAR +
Ikonos

AirSAR +
Landsat

Ikonos +
Landsat

90.86 18.27 863.0 87.85 20.16 838.5 91.69 16.10 878.0

Ikonos +
Landsat +
AirSAR

88.05 14.32 868.7

sensor data and then performing the classification on the fused data and on the testing data, there is a decrease
in false-alarm rate when using the latter approach, compared to the former.

6. DISCUSSION AND CONCLUSIONS

From the results presented here there are several conclusions that can be drawn.

For any particular sensor image data set (or combination of sensor image data sets), as one increases complex-
ity of the classification algorithm to be used (i.e. from AFREET-spectral to AFREET-Gabor to AFREET-search
to combined mulitple AFREET-search), there is a decrease in false alarm rates for both in-sample and out-of-
sample data.

The more complex classifiers always do better than the other less-complex classifiers on the training data.
However, for the combination of single sensor data (the least complex data), and the most complex classifier (the
combined multiple AFREET-search) you pay the price of this extra complexity in the classifier by performing
worse on the testing data than a less complex classifier (i.e. single AFREET-search run). For the fused (more
complex) data, the most complex classifier does much better on the testing data. The combined multiple
AFREET-search mode results on testing data are better than the single AFREET-search mode for the 3-sensor
fused data, and for 2 out of 3 of the 2-sensor fused data. Therefore, for the data sets and classifiers used in these
experiments, we can hypothesize that as one increases the complexity of the data being used, more complex
classifiers become more useful.

For the comparison between fusing multiple single-sensor data sets and then performing classification and
performing classification on multiple single-sensor data sets separately and then fusing the results, there appears
to be no distinct benefit, with these data sets and classifiers, in performing one way or the other, except that,
on out-of-sample data, the latter method has a reduced false-alarm rate.



Table 6. Results using AFREET-search: effect of additional sensor data

DR FAR Score DR FAR Score DR FAR Score
Training

Ikonos Landsat AirSAR
99.97 2.77 986.1 99.99 0.92 995.3 99.66 4.40 976.4

AirSAR +
Ikonos

AirSAR +
Landsat

Ikonos +
Landsat

99.99 3.24 983.8 99.98 1.13 994.4 99.99 1.04 994.8

Ikonos +
Landsat +
AirSAR

99.99 1.37 993.2
Testing

Ikonos Landsat AirSAR
87.23 15.93 856.6 93.98 14.13 899.3 89.56 13.09 882.3

AirSAR +
Ikonos

AirSAR +
Landsat

Ikonos +
Landsat

91.76 16.35 877.1 92.84 15.56 886.4 88.63 15.84 864.0

Ikonos +
Landsat +
AirSAR

91.99 15.13 884.3

Table 7. Comparison of average performance for combining classification results: data from two sensors

AirSAR + Ikonos AirSAR + Landsat Ikonos + Landsat

DR FAR Score DR FAR Score DR FAR Score

Training

AFREET-search 99.99 3.24 983.8 99.98 1.13 994.4 99.99 1.04 994.8

combined multiple AFREET-search 100.0 0.42 997.9 100.0 0.01 1000.0 100.0 0.02 999.9

AFREET-spectral on outputs of

combined mulitple AFREET-search 100.0 0.20 999.0 100.0 0.07 999.7 100.0 0.07 999.7

Testing

AFREET-search 91.76 16.35 877.1 92.84 15.56 886.4 88.63 15.84 864.0

combined multiple AFREET-search 80.34 4.53 879.1 92.22 9.05 915.9 77.24 8.17 845.3

AFREET-spectral on outputs of

combined mulitple AFREET-search 71.85 3.56 841.5 88.86 1.55 936.6 78.15 2.87 876.4
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